Inducible Polymerization and Two-Dimensional Assembly of the Repeats-in-Toxin (RTX) Domain from the Pseudomonas aeruginosa Alkaline Protease

نویسندگان

  • Liang Zhang
  • Jonathon Franks
  • Donna B. Stolz
  • James F. Conway
  • Patrick H. Thibodeau
چکیده

Self-assembling proteins represent potential scaffolds for the organization of enzymatic activities. The alkaline protease repeats-in-toxin (RTX) domain from Pseudomonas aeruginosa undergoes multiple structural transitions in the presence and absence of calcium, a native structural cofactor. In the absence of calcium, this domain is capable of spontaneous, ordered polymerization, producing amyloid-like fibrils and large two-dimensional protein sheets. This polymerization occurs under near-physiological conditions, is rapid, and can be controlled by regulating calcium in solution. Fusion of the RTX domain to a soluble protein results in the incorporation of engineered protein function into these macromolecular assemblies. Applications of this protein sequence in bacterial adherence and colonization and the generation of biomaterials are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calcium-induced folding and stabilization of the Pseudomonas aeruginosa alkaline protease.

Pseudomonas aeruginosa is an opportunistic pathogen that contributes to the mortality of immunocompromised individuals and patients with cystic fibrosis. Pseudomonas infection presents clinical challenges due to its ability to form biofilms and modulate host-pathogen interactions through the secretion of virulence factors. The calcium-regulated alkaline protease (AP), a member of the repeats in...

متن کامل

Interdomain Contacts and the Stability of Serralysin Protease from Serratia marcescens

The serralysin family of bacterial metalloproteases is associated with virulence in multiple modes of infection. These extracellular proteases are members of the Repeats-in-ToXin (RTX) family of toxins and virulence factors, which mediated virulence in E. coli, B. pertussis, and P. aeruginosa, as well as other animal and plant pathogens. The serralysin proteases are structurally dynamic and the...

متن کامل

Genetic and biochemical characterization of PrtA, an RTX-like metalloprotease from Photorhabdus.

Proteases play a key role in the interaction between pathogens and their hosts. The bacterial entomopathogen Photorhabdus lives in symbiosis with nematodes that invade insects. Following entry into the insect, the bacteria are released from the nematode gut into the open blood system of the insect. Here they secrete factors which kill the host and also convert the host tissues into food for the...

متن کامل

Evaluation of the Phenotypic and Genotypic Effects of Satureja Khuzestanica Essence and Copper Nanocomplex on the Expression of Alkaline Protease Gene in Pseudomonas Aeruginosa by RT-PCR Method

  Background & aim: Pseudomonas aeruginosa is a gram-negative bacillus and an opportunistic pathogen that causes high mortality in immunocompromised patients. The main antimicrobial activity of Satureja khuzestanica essence is due to carvacrol phenolic components. Nanomaterials can be a good choice because of low toxicity to fight pathogenic microbes. The aim of this study was to evaluate the e...

متن کامل

Pseudomonas aeruginosa mutants altered in their sensitivity to the effect of iron on toxin A or elastase yields.

Iron affects yields of toxin A, alkaline protease, elastase, pyochelin, and pyoverdin in Pseudomonas aeruginosa. Mutants of P. aeruginosa PAO1 resistant to the effect of iron on toxin (toxC) or elastase (elaC) yields were isolated. Two types of mutants were isolated: iron transport and iron regulatory mutants. The toxC regulatory mutants produced toxin A in medium containing iron; however, yiel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 53  شماره 

صفحات  -

تاریخ انتشار 2014